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ABSTRACT

This thesis investigates the ability for recently devised packet-level Transmission Control Pro-
tocols (TCP) transport classifiers to discover abusive traffic flows, especially those not found
via traditional methods, e.g., signatures and real-time blocklists. Transport classification is
designed to identify hosts considered to be part of abusive infrastructure without deep packet
inspection. A particular focus is to understand the applicability of such methods to live, real-
world network traffic obtained from the Naval Postgraduate School campus enterprise network.
This research evaluates both how consistent and how complimentary transport traffic classifi-
cation is with known blocklists. In particular, the system has a 97.8% average accuracy with
respect to blocklist ground-truth, while also correctly identifying 94% of flows to abusive hosts
unknown to the blocklists as verified through manual sampling.
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CHAPTER 1:
Introduction

In today’s advanced digital age of high-tech sophisticated and integrated networking systems,
one consistent peril that most organizations and common computer users face is “abusive” in-
frastructure. Despite the concerted efforts of industry and academia, the threats posed by abu-
sive sites remain a constant problem. This thesis explores a technique to discern hosts that
support abusive web infrastructure by discovering differentiating characteristics of their traf-
fic flows. In particular, TCP-level flow statistics can reveal hosts that are both congested and
poorly provisioned–features that this work shows are frequently associated with abusive sys-
tems. Importantly, the approach in this thesis is privacy preserving, allowing deployment in
new domains, while being complimentary to existing abusive traffic detection methods.

Abusive infrastructure on the network consists of systems that function subversively to assist
and/or advance malicious or illegal activities in various forms. Abusive infrastructure can in-
clude, but is not limited to, web sites that cater to, sponsor, or actively participate in supporting
various forms of malicious content. Thus, abusive infrastructure commonly includes botnets
and complicit service providers who may produce abusive traffic that includes email spam,
malware, scam hosting, denial of service, scanners, etc. Underscoring the impact of abusive
traffic, in 2010, more than 89% of all email messages on the Internet were attributed to spam.
Furthermore, about 88% of these spam messages were sent with the help of botnets [1].

Much time and effort continues to be expended toward methods of limiting or negating the im-
pact of malicious type activities that occur throughout the Internet. Existing methods, some of
which are covered in Chapter 2, have been developed and used to deter abusive traffic. Unfor-
tunately, many deployed techniques are often circumvented by adversaries who quickly adapt
by evading detection/blocking methods, or by developing new schemes designed to go unde-
tected. Thus, despite significant advances in technology and methodology, malicious activities,
and resulting abusive traffic, remain prevalent. Not only is abusive traffic a constant source of
frustration, it can have potentially more serious consequences when used to subvert security
policies and carry out malicious acts aimed at harming systems or the data they store.

Being able to identify abusive traffic, especially traffic not previously identified, at an early
stage to block its ingress into critical information systems infrastructure, and have the ability
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to block egress from a specific system or user that is bound for an abusive infrastructure, is the
primary goal of this research.

1.1 Significance of Work to the DoD
Within the Department of Defense (DoD), unsolicited bulk email, for example, spam, phishing,
or spoofing, is a constant source frustration and economic burden. According to the Department
of Navy (DON) Chief Information Officer (CIO), the protection of vital DON networks and in-
formation, given the popularity of malware and cyber terrorism, continues to be a challenge. In
his report in 2009, the CIO goes on to indicate that each month the DON blocks approximately
9 million spam messages and detects more than 1,200 intrusion attempts, while blocking an
average of 60 viruses monthly before they can infect the Navy and Marine Corps network [2].

The particular burden that is placed upon Naval organizations comes in the form of wasted man
hours, which is the time, effort and money spent to eliminate this type of email. The time spent
toward remediation efforts of systems that have become infected, as a result of the execution
of a malicious link within the unsolicited email or the visit to a malicious web site, can vary
greatly depending on the particular infection and method of deployment. This is even more
so a challenge for those units, for example, the Navy, where limited bandwidth and satellite
connectivity is the primary means of connectivity for communications and networking, both
tactical and non-tactical. Spam ties up crucial limited bandwidth and network resources, as
spam adds to the total cost of network operations. Spam has and continues to be disruptive in
that it can contribute to network mail server crashes or Denial of Service (DOS).

Navy information systems that become compromised as the result of malware or malicious
activities can lead to anything from the minor inconvenience associated with a temporary loss
of service to a major catastrophe with systems being impacted for long periods of time. Like
many organizations, the Navy relies on these information systems to a great extent and cannot
adequately perform many of its mission sets when critical information systems are rendered
inoperable.

Though Navy information systems, like other armed services and government agencies, have
networks internal to the specific organization, they are still connected to the Internet. This
in turn opens up vulnerabilities that any malicious entity might attempt to exploit. Even the
common user offers up a level of vulnerability through the websites he may visit or a particular
spam email that happen to have arrived in their inbox. All of these threaten to compromise the
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integrity, availability, and accessibility of our networks and critical information systems.

In serious cases involving compromised systems, not only can the system be rendered unavail-
able, it is also possible that the malicious activities would involve data exfiltration and loss of
official use only or Personally Identifiable Information (PII).

The impact of abusive infrastructure is not confined to spam. Compromised hosts may also
contribute to scam hosting infrastructure, including web and Domain Name Service (DNS)
capabilities, or may directly participate in harvesting sensitive data or sending attack traffic.

1.2 Scope
In our research, we will concentrate on conducting transport analysis on real-world active net-
work traffic and apply recently devised packet-level TCP transport classifiers to discover abusive
traffic flows, especially those not found via traditional methods, e.g., blocklists. Through trans-
port analysis methods, we will gain a better understanding of the real-world performance of our
classifier, improve upon both the classifier and fine tune existing methods, and seek to develop
new analysis techniques to identify and expose malicious web hosts.

Malicious Website Identification (MWID) or MalWebID is our collection of tools, programs,
and processes that have been developed to identify abusive web sites and infrastructure as part
of this thesis.

In particular, focusing on and understanding the practical, real-world performance of using
transport traffic features to identify malicious web sites found in live traffic streams, we aim
to introduce a novel approach to identifying abusive infrastructure. Our approach and use of
MWID’s technique may in fact help redefine how abusive infrastructure is identified and help
pave the way to better methods of blocking these types of sites.

1.3 Goals
Leveraging the research previously performed in the papers outlined in Chapter 2 and under-
standing the different approaches taken in identifying and combating malicious content, our
research will demonstrate a novel technique that utilizes the features of network traffic for de-
tecting and classifying abusive infrastructure. Our goals are to explore the following:

• Determine if it is possible to accurately detect and identify a malicious web host in real-
time, via an automated means, even when the malicious host is currently unknown or does
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not currently exist on any known “black list” or “block list”, which are both discussed in
Chapters 2 and 3.
• Introduce the MWID tool set and demonstrate its capabilities as a fast and efficient means

of collecting and analyzing live network traffic to accurately detect and identify malicious
or abusive infrastructures, all while preserving privacy.
• Determine if our technique of transport traffic analysis can provide a mechanism to help

aid existing host-based security systems and provide an added layer to improve protection.
• Determine if new techniques or classification algorithms are required in order to produce

the overall Classification Accuracy (CA) to demonstrate the effectiveness of our approach
at correctly identifying and classifying malicious hosts.

1.4 Results
By conducting transport analysis on real-world “active” network traffic and applying the use of
recently devised packet-level TCP transport classifiers to discover abusive traffic flows, we are
able to provide the following contributions through the use of MWID:

1. present a fast and efficient (passive) tool that is able to run on a variety of systems, pri-
marily connected or installed at the core of a network, that will help augment existing
network security infrastructure by detecting abusive traffic and infrastructure.

2. then demonstrate the effective means of detecting abusive traffic through the statistical
analysis of key transport layer traffic features.

3. provide detailed analysis of our findings while working with live data captures, specifi-
cally an overall classification accuracy that exceeds 95 percent.

4. offer recommendations for future work.

This tool represents a step toward combating malicious and abusive infrastructure. With the
proper integration within a network’s security architecture, such as that of the DoD, MWID may
provide a viable means to help reduce the threat posed by many types of abusive infrastructure.

1.5 Thesis Organization
The remaining sections of this thesis are broken down into the following key chapters:

• Chapter 2 provides background information to tie in the scope and context of the problem.
We discuss previous research performed in the area of detecting and identifying abusive
infrastructure and perform a brief comparison of our work to that the previous work.
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• Chapter 3 provides a synopsis of our experiment methodology, detailing the steps that
were conducted during the research. Specifically:
– Phase I: Data Collection and Development
– Phase II: Testing and Refinement of Classifier
– Phase III: Evaluate Live Captures
– Phase IV: Test and Reevaluate Data Sets
• Chapter 4 provides a review and overall assessment of the results found during the re-

search and experiments.
• Chapter 5 provides a summary of conclusions and outline future work of importance in

stopping abusive infrastructure.
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CHAPTER 2:
Background

Over the past few years there has been a dizzying growth in the use of the Internet, primarily
in the area of of web services, including cloud computing, blogs, video services, and popular
social media sites. In December 2000, there were near 361 million Internet users and by the
end of December 2012, there were over 2.4 billion users, which equates to a 566% increase in
Internet users [3].

Unfortunately, systems connected to the Internet are constantly in danger and run the risk of
exposure to malicious acts, which include phishing, malware, and scams, all of which pose a
reoccurring threat.

While seemingly able to manifest in a variety of different forms, attacks can cause problems
ranging from a simple inconvenience to something more severe, such as extracting sensitive
personal data or the permanent deletion of data. Considering the negative impact that malicious
activity has and continues to have on our networks and information systems, a great deal of
work has taken place within academia related to detecting abusive infrastructure and thwarting
its ability to adversely impact critical computing infrastructure.

2.1 Prior Work
Considering the enormous efforts that have been expended toward combating abusive infras-
tructure, significant progress has been made in the field, to include traffic content monitoring,
detecting and documenting abusive networks, and identifying abusive communications patterns.
Specific research that has had the greatest influence on this thesis are in the area of auto-learning
of Simple Mail Transfer Protocol (SMTP) TCP transport-layer features for spam [4], trans-
port traffic analysis of abusive infrastructure [5], exploiting transport-level characteristics of
spam [6], and BotMiner [7], and more recently BotFinder [8]. Some key areas of interest are
summarized here.

2.1.1 Transport Traffic Analysis
Recent work by Nolan on transport traffic analysis of abusive infrastructure [5] investigated a
passive analysis technique to identify discriminating features of abusive traffic, using per-packet
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TCP header and timing features, to identify congestion, flow-control, and other key flow char-
acteristics. Because abusive infrastructure is often poorly connected, or connected to residential
networks, these characteristics were used to identify links that are typically associated with that
of an abusive infrastructure. The passive approach shown in his research did not rely on ei-
ther content inspection, Command and Control (C&C) signatures, or that of sender reputation,
thus maintaining data privacy and facilitating wider potential deployment scenarios. Further,
the technique is complementary to other methods. The technique showed promise, in that he
achieved a classification accuracy up to 94% in detecting abusive infrastructure, with only a
3% false positive rate. Unfortunately, the results were limited in that they were inclusive only
of traffic captured in an experimental environment, and used Alexa as the source of legitimate
websites, rather than the true mix of traffic an enterprise or organization might experience.

This thesis builds upon Nolan’s work, where we perform live network traffic analysis with the
goal of identifying not only previously identified malicious hosts, which account for those that
have been identified and are currently on a blacklist, but more significantly identifying unknown
malicious hosts, those that have not been seen or previously documented, i.e., truly abusive hosts
that do not appear in any current blacklists.

Blacklists, also known as blocklists, are simply a list that consist of either Internet Protocol (IP)
addresses, host names, or a combination of both and have been determined by a variety of
means to be malicious in nature. i.e., IP addresses that are identified as generating spam can be
blacklisted and are blocked from being able to deliver email. In most circumstances, when an
IP address or host name is blacklisted, no notice is sent to the user or owner.

2.1.2 Auto-learning
Kakavelakis et al. introduces auto-learning using the transport-layer features, by developing an
application that performs transport traffic analysis aimed at the spam reception problem. The
auto-learning aspect is the process of building up the classification model based on exemplar
e-mail messages whose scores exceed certain threshold values [4]. They take their training data,
which consists of data that is clearly spam and clearly ham, and use the associated flow-features
to train Spamflow. Working off of the premise that for a spam campaign to be financially
viable, the host server must maximize its output of spam traffic. This in turn means that the
host machines produce an exorbitant amount of network traffic, which can then be identified
and disassociated from normal network traffic. Here, they design SpamFlow [6] as a plugin
to SpamAssassin, a well-known learning-based spam filter used to identify spam signatures.
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SpamFlow is a unique tool (analyzer) that listened on an interface and captured flows of data,
to then build features for each flow of traffic seen. For spammers, the properties of the feature
properties of the transport-layer prove to be different than that of normal user traffic and able to
be identified. Once these features are gathered and processed using an auto-learning classifier,
they were able to accurately identify and distinguish spam traffic from that of general use traffic,
with a greater than 95% accuracy rate.

This thesis uses the method performed by Kakavelakis et al. and Nolan, but as applied to
the problem of specifically identifying abusive infrastructure. Using statistical traffic signal
characterization as a discriminator for spam has proven to be effective. We believe that by
capturing specific traffic features from each tcp flow and conducting statistical analysis on those
features, previously labeled as good or bad, will show to be an effective tool at differentiating
between non-malicious and malicious and traffic, independent of content or location.

Building upon this previous work and recently developed packet-level TCP transport classifiers,
our research involves methods applied to live network traffic to discover not only “known” abu-
sive traffic flows, i.e., those in blacklists, but also those not found via traditional methods, i.e.,
hosts not in existing blacklists. To do this, we utilize a newly revised version of SpamFlow, now
known as TTAD, which is a crucial tool used in this research and necessary for successfully gen-
erating the feature vectors that are used for classifying traffic as either good or abusive/malicious
(bad). TTAD avoids performing content analysis, reputation analysis, and maintains privacy of
data, allowing for a deployment of the tool near the network core.

2.1.3 Malware Detection Systems
Tegeler et al. presented BOTFINDER, which is a newly devised malware detection mecha-
nism that is primarily based off of statistical network flow analysis [8]. In their implementation
of a unsupervised auto-learning tool, they perform a training phase on predefined known data
sets about bots. The BOTFINDER tool then creates models, which are based on the statistical
features found in the C&C communication. The C&C path is simply the channel by which mali-
cious software components are coordinated, primarily by a single source known as a Botmaster.
Through their analysis, they show that BOTFINDER is able to detect malware infections with
detection rates near 80%, based on traffic pattern analysis with no deep packet inspection.

There are some similarities to the work Tegeler et al. performed and the research performed
as part of this thesis. Of key note are the use of traffic features, which we rely on for our flow

9



labeling, and the ability to perform the statistical analysis without the need for deep packet
inspection. This is another key advantage in our research, as we introduce the capability for
a fast and efficient means of collecting and analyzing live network traffic to accurately detect
and identify malicious or abusive infrastructures, all while preserving privacy (no deep packet
inspection necessary.)

2.1.4 Image Analysis
In the research conducted by Andersen et al. we are introduced to a technique called Spam-
scatter [9], which is used to characterize scam hosts and identify the infrastructure that supports
spam. The method proposed in this thesis would be able to identify the hosts of the scam sites.
These hosts may be serving or hosting multiple scams, being used to advertise spam, or serve
as a spam type server and prevent delivery.

In our approach, we gather specific traffic features from each HTTP request. We then perform a
statistical analysis to apply discriminators to the transport layer features, which aid in identify-
ing malicious or abusive infrastructure. Our approach, unlike Spamscatter, will not involve any
type of image analysis, and will rely on key traffic features to help identify the type of traffic.

2.1.5 Communications Patterns
Using clustering analysis of communication patterns [10] Gu et al. created a system that cap-
tures communication structure from network traffic, specifically dealing with bots. They created
BotSniffer, which uses Spatial-Temporal Correlation (STC) techniques that provide a means of
identifying bots without any prior knowledge of that bot or a botnet.

BotSniffer consists of two separate components, one of which is the monitor engine and the
second is the STC.

Combined with IDS like functionality, they use clustering of communication patterns to dif-
ferentiate between that of good hosts and malicious hosts. The monitor engine was placed at
the network edge or perimeter and performs several key functions. It would detect and log any
suspicious connection C&C protocol and response behaviors, which are forwarded to the STC
for group anaylsis. The STC engine processes two types of communication techniques (IRC
and HTTP) into specialize algorithms to perform there communications checks.

This research does not look at the communications structure of malicious activity or that of abu-
sive infrastruction and is focused on the properties of the traffic streams, ignoring the application-
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layer content and IP addresses to identifying abusive infrastructure. The important difference
enables our proposed technique to operate, without complete knowledge of the data or message,
either in the core or at the edge of the network.

2.1.6 Behavioral Analysis
RB-Seeker [11], introduced by Hu et al. is a tool that can detect compromised computers, which
are being used as a redirection or proxy server for a botnet, with a very high accuracy rate.
The RB-Seeker tool performs analysis on the behavioral attributes that are extracted from DNS
queries of the redirected domains. While this research does not look at any behavioral attributes,
prior work by Nolan [5] showed that many websites, not just abusive ones, use redirection in
order to control traffic flow, suggesting that such techniques alone may not be currently viable
to identify bots. Similar to RB-Seeker, this research looks at finding discriminatory attributes
of redirection, however; instead of cataloging DNS queries, we are concerned with transport
traffic features for each HTTP request.

2.1.7 Online Learning
In the research by Ma et al. they look at online learning techniques for detecting malicious
infrastructure by using features that are associated with URLs [12]. The problem they had to
overcome was the fact that URL features had no context or content. They looked at two different
feature sets, Lexical and Host-based, which contain URL information that is easy to obtain. The
Lexical features involve the appearance of the URL, where the address is not in a format that is
generally associated with that of a normal URL (i.e., www.google.com).

Their research involved a variety of features, including black-lists, heuristics, domain name
registration, host properties and lexical properties. Looking at a few of these key aspects, we
see that the black-lists they used were some of the same that we use in our research (SORBS,
Spamhaus, etc.). They used WHOIS to gather information on the sites registrar, registrant, and
dates. The host-based features they looked at provided information concerning the host web
site, such as where the malicious code is being hosted, who might own it, and how it is being
managed. The lexical features are simply tokens in the URL hostname plus the path, the length
of the URL and number of dots in the notation.

The describe their URL classification system as one that extracts URL source data, processes it
through a feature collection routine (extracting key features) and processing the combined URL
and features through their classifier, similar to the method we use to process our traffic flows.
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However, a key difference in the research by Ma et al. and our research, is that they are looking
at features of URLs and attempting to determine, based off of the features, whether the URL
is from an abusive site or not. Our approach is different in that, we extract 21 feature vectors
from the flows of traffic, process the flow host names and IP addresses separately to determine
labeling (good, bad or unknown), merge the two pieces of information together to process via
our learner/classifier model. We then demonstrate the ability to actively identify malicious
hosts, which have not previously been identified.

2.1.8 Signatures and Characteristics
Xie et al. looked at signatures and characteristics [13] which involved a spam signature gener-
ation by URL analysis and the development of a system, AutoRE, to identify and characterize
botnets automatically, which is based on mining spam URL data embedded in emails. This
thesis research is more involved than what Xie et al. was trying to accomplish with AutoRE.
We are looking at the behavior of network traffic and avoid content analysis, whereby we pre-
serve privacy. AutoRE only looked at the URL of a domain and disregards all other important
evidence that was discovered in the traffic flow.

By leveraging the research performed in the above papers and through better understanding
of the prior approaches and vantage points taken towards identifying and combating abusive
infrastructure, our approach outlined in this thesis will be unique and stand apart.

2.2 Machine Learning / Supervised Classifiers
Of the variety of different methods that have been devised to detect abusive infrastructure,
our research is based on supervised learning. In supervised machine learning, an algorithm
is sought that can learn from external data instances and is able to form a hypothesis, followed
by prediction about additional data that has no current label or classification [14]. This means
that by building a model of our labeled “known” data, our constructed classifier is then used to
assign labels to future “unknown” test data. If our data has known labels then the learning is
called supervised and conversely, in unsupervised learning the data has no labels. See table 2.1
for an example of supervised learning.

We use extracted transport traffic features as input to supervised learning algorithms (train-then-
test method). Specifically, Naïve Bayes and Tree Learner algorithms are used as our trainers,
processing our labeled data and then used to predict the labels for our set of unknown data types.
The complete methodology is outlined in chapter 3.
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Table 2.1: Supervised Learning Feature Model
Flow Feature1 Feature2 Featuren Classified

Data 1 xx xx xx GOOD
Data 2 xx xx xx BAD
Data 3 xx xx xx GOOD
Datan xx xx xx GOOD

2.3 Classification Techniques
We use two well-known supervised learning algorithms (classifiers) to process the data which
was extracted from the processed packet captures, Naïve Bayes and Decision Tree, which are
employed through the use third-party software [15].

2.3.1 Naïve Bayes
The Naïve Bayes classifier, often called the Bayesian classifier, is one that is probabilistic,
which generally has a short computational time for training [14], and estimates conditional
probabilities from our training data, then uses that to label any new instances of data.

The naïve assumption made by Bayes is that each feature is conditionally independent of the
other features, given a particular class variable. Bayes theorem is defined as [16]:

P (C = ck|
−→
F =

−→
f ) =

P (
−→
F =

−→
f |C = ck)P (C = ck)

P (
−→
F =

−→
f )

Label definitions:

• C = class variable
• ck = variable (“GOOD” or “BAD”) labeled for each individual flow
•
−→
F = feature vector

•
−→
f = flow vector

• f1, ..., fn = attribute values

Next, we must apply the independence assumption with the following:

P (
−→
F =

−→
f |C = ck) =

∏
i

P (
−→
Fi =

−→
fi |C = ck)
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Applying a decision rule [17], which is the Maximum A-posteriori Probability (MAP), we have:

c = classify(f1, f2, ..., fn)

= argmax
k=(BAD,GOOD)

(P (C = ck|
−→
F =

−→
f ))

= argmax
k=(BAD,GOOD)

(
P (
−→
F =

−→
f |C = ck)P (C = ck)

P (
−→
F =

−→
f )

)

= argmax
k=(BAD,GOOD)

(
P (C = ck)

∏
i

P (
−→
F =

−→
f |C = ck)

)

Here, the following applies:

• P (C = c) = prior probability
– ratio of examples belonging in a class (c) to the total examples
• Fi = number of vectors
• fi = vector value
• ck = particular class – conditional probability is the ratio of vectors with a value belonging

to a particular class to the total vectors belonging to a particular class

When dealing with continuous values, we must assume a normal distribution [18], which we
defined as:

P (
−→
F =

−→
f |C = ck) = g(χi;µi, ck, σi, ck)

g(χ;µX , σX) =
1√
2πσ

e−
(x−µ)2

2σ2

In simplistic terms, it assigns the most likely classification to unlabeled data, based on the data’s
distinct features or characteristics. Despite often violating the conditional independence rule,
naïve Bayes generally performs quite well under a variety of problem sets.
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Key advantages of naïve Bayes:

• Handles quantitative and discrete data
• Handles missing values by ignoring the instance
• Fast and space efficient
• Not sensitive to irrelevant features

Disadvantages of naïve Bayes:

• If conditional probability is zero
• Assumes independence of features

Unfortunately, as we discovered during our testing, naïve Bayes did not perform as well as
the Decision Tree algorithm, often labeling data incorrectly, which may have been due to the
existence of multiple sets of the same data, resulting in numerous inconsistently labeled traffic
flows.

2.3.2 Decision Tree
The Decision Tree is a predictive model that maps observations about a particular piece of data
to conclusions about the data’s value. Using the traffic features for each flow of data in the
labeled.csv file, the Decision Tree creates a model that predicts the value of our data based on
those features. The manner in which a decision tree algorithm works makes it a kind of greedy
algorithm, because it uses a top-down recursive manner to determine the tree structure [19].

Decision trees uses information gain in order to build a tree from a list of classified examples,
evaluating each feature in the feature vector as follows:

• selects the best feature as the root
• creates a descendant node for each value of a different feature
• repeats recursively for each node
• ends when:

– vectors of a current node are of the same class
– no features remain

Using a decision tree, we are able to classify flows that have unknown attribute values by es-
timating the probability of the various possible results. For evaluating features and in order to
select the best feature, decision trees generally use attribute Information Gain (IG) [18]. With a
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set S of training examples, the IG of features A is:

IG(A) = Entropy(S)−
∑

v∈V alues(A)

|Sv|
|S|

Entropy(Sv)

where:

Entropy(S) = −
c∑

i=1

pi log2 pi

Consider a set of attribute A values, where:

• Sv = subset of S

• pi = ratio of the number of examples belonging to class i to the total number of examples
provided.

The goal is to simply maximize the IG of a selected attribute, done by minimizing the entropy
of Sv. However, IG unfortunately selects attributes with a large set of values and has to be
overcome. This can be accomplished by utilizing the information-gain ratio [20]. The following
formula is offered:

GR(A) =
IG(A)

IV (A)

where:

IV (A) = −
|A|∑
i=1

|Si|
|S|

log2
|Si|
|S|

For the testing we perform, the Decision Tree performed best, and was our main choice of
classifier algorithm.

2.4 Real-time Blackhole List and Alexa
In this section we discuss the individual Real-time Blackhole Lists (RBLs) and the Alexa Top
1 Million List, which we use in our labeling process in Chapter 3.
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2.4.1 Spamhaus
The Spamhaus website provides us with several “realtime” spam-blocking databases that are
utilized in industry to combat spam sent via the Internet [21]. The key databases that we use
in this research are the Spamhaus Block List (SBL), Exploits Block List (XBL), Domain Block
List (DBL) and the Policy Block List (PBL).

Using Spamhaus, we process all of the flows from our captures, to include the fetcher data.
Any host names discovered currently listed on a Spamhaus blacklist was labeled as “BAD.”
Conversely, any host names that are not found on a blacklist but found on Alexa are labeled as
“GOOD.” As previously mentioned, in the event that we encounter a conflict where a host name
is listed on an RBL as malicious and the same host name appears on the Alexa top 1 million
list, it is defaulted to malicious or “BAD.”

2.4.2 Spam and Open Relay Blocking System (SORBS)
The SORBS site provides us with Domain Name System Block Lists (DNSBL), which are used
throughout industry to help identify and block spam email, to help prevent phishing attacks, as-
well-as combat other types of malicious email [22]. The lists, which is over 12 million hosts, are
maintained by IP address, to include those that are dynamically allocated, and can include any
email server that is suspected sending spam, has been hacked, has been hijacked, or suspected
of having any Trojan Horse infection.

2.4.3 ZEN
ZEN, a product under Spamhaus, combines all of the Spamhaus IP-based DNSBLs into a sin-
gle all encompassing comprehensive blocklist [21], containing the SBL, acSBLCSS, XBL and
PBL blocklists. This simply allows for greater efficiency and faster database querying for host
resolution.

2.4.4 Malware Domain
As the name suggests, the site provides a list of malicious domains that can be utilized to help
determine whether domain caters to malicious or abusive traffic [23]. The list of malicious hosts
was downloaded and referenced locally when performing our research, and checked weekly for
updates. The list would range in size, but generally contains approximately 1200 malicious
host names. Only during capture 2 were we able to resolve a single malicious host name from
Malware Domain.
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2.4.5 PhishTank
PhishTank is a site dedicated to providing information about phishing that occurs throughout
the Internet [24]. Phishing is any fraudulent attempt to steal another individuals personal iden-
tifiable information. Like that of the malware domain list, we downloaded and referenced the
PhishTank list of malicious hosts locally during our research. The list was checked weekly for
updates. Generally, there were approximately 12000 hosts listed as malicious.

2.4.6 Alexa
We utilize the the Alexa Top 1 Million database as a foundation to measure and build a list
of non-malicious sites, for comparison in our research, though we understand that it is not a
certainty that all sites listed in Alexa are in fact non-malicious. It provides an important ground
truth as to hosts we consider non-malicious.

18



CHAPTER 3:
Methodology

Malicious Website Identification (MWID) leverages recently devised packet-level TCP trans-
port classifiers to discover abusive traffic flows in live traffic, especially those not found via
traditional methods (e.g., RBLs). This chapter details the methodology employed in this thesis
to implement and test MWID. We first summarize the operation of MWID, then describe the
four real-world packet captures analyzed. Next, we explain the basic operation of the transport-
layer feature extraction and classification engine, as well as the use of a web site “fetcher”
program that, when combined with an operational honeypot, ensures that the packet captures
contain known abusive flows in addition to the user-generated traffic. Finally, we describe the
use of multiple white and block lists for obtaining other sources of ground-truth, which we will
use as a basis to understand the performance of MWID.

3.1 Overview
This section provides a high-level overview of the operation of the MWID system. Table 3.1
summarizes the various programs used to analyze the data, while figure 3.1 illustrates the overall
collection, processing and analysis work flow implemented by MWID.

Table 3.1: MalWebID Program Process
Program Input Output Description
ttad pcap.list ttad.out Extract per-flow traffic features from .pcap
mwid_pcap pcap.list hosts.out Extract per-flow HTTP host from .pcap
mwid_label hosts.out flows.out Label flows with RBL host and IP lookups
mwid_merge flows.out labeled.csv Merge flow and feature data

ttad.out unknown.csv
mwid_class labeled.csv reclassed.csv Classify unknown flows using RBL-based

unknown.csv training model

1. Using tcpdump, we capture multiple libpcap formatted traffic traces, several of which
exceed 24 hours in duration (§3.2):
• As part of several captures, we utilized our external honeypot to provide URLs that

are presumed to be malicious, for the purpose of injecting them into the capture. In
this way, we ensure that the flows contain traffic from malicious hosts and allows
for better classification performance testing.
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• Process each capture with ttad to accumulate per-flow traffic characteristics and
features (table 3.3)
– ttad.out file is created
• Process multiple .pcap files with mwid_pcap.py to extract per-flow TCP header,

HTTP application-layer host information, IP addresses, and TCP port numbers (ta-
ble 3.4)
– hosts.out file is created, which includes all .pcap data

2. Perform data labeling:

• Process the hosts.out file using mwid_label.py to determine proper classifica-
tion or label for each host flow. The labeling is accomplished by looking each host
name and associated destination IP address up on key RBL list sites (§2.4). For a
list of non-malicious sites, we utilize the Alexa Top 1 million list. Sites (by IP or
host name) discovered on an RBL are labeled as “BAD” and sites listed on Alexa
are labeled as “GOOD;” otherwise the flow is marked as “UNKNOWN” (§2.1).
– flows.out file is created

3. Perform data merge:

• Process the flows.out and ttad.out using mwid_merge.py to combine per-flow
traffic characteristics with that of the associated TCP header information
– labeled.csv file is created, which contains “GOOD” and “BAD” traffic flows
– unknown.csv file is created, which contains only “UNKNOWN” traffic flows

4. Classification:

• The labeled.csv file used as training data
• The unknown.csv file used as testing data
• Both files are processed using mwid_class.py, which invokes third-party soft-

ware [15] to perform statistical analysis on our training data to build a model. The
learned model then determines the label for each unknown data flow
– reclassed.csv file is created, where all unknown flows of data are labeled

5. Sampling:

• Given the reclassification results contained in reclassed.csv, manual sampling is
performed on randomly selected flows, with an even split between flows labeled
“GOOD” and “BAD.” A human uses a standard web browser to visit the sites and
determine whether it is in fact malicious or non-malicious. This necessary and time
critical step aids provides ground-truth to better assess the accuracy MWID. As
a majority of malicious sites are short-lived, we ensure that sampling occurs soon
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after obtaining data so that sites are visited while operational.

Figure 3.1: MalWebID Flow Process.
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3.2 Packet Captures
We performed several live network packet captures, using a network tap on the Naval Postgrad-
uate School (NPS) enterprise network, over a period of seven months. This connection was
able to capture all inbound and outbound network traffic for the NPS Computer Science and
Operations Research Departments, but not the school as a whole. Three of our captures include
traffic generated by an automated program, the “fetcher,” that automatically pulls content from
web sites discovered by a honeypot. A honeypot is simply a computer system that has been set
up to appear as though it is part of a normal network, where it could contain some information
or data that would be useful to an intruder or attacker. However, the honeypot is actually an
isolated and monitored computer, used in this case for research to provide URL information
from sites that visit it.

We performed the captures on different days, with the requirement that captures were performed
during peak times, where we knew that a majority of users are accessing the network (i.e.,
weekdays vice weekends). Table 3.2 summarizes the captured data analyzed in this thesis.
Despite the capture timeframe, we found that some captures that ran longer, (i.e., 46hrs), did
not capture as much data as a capture that ran for a shorter period of time. This can be attributed
to several reasons, specifically the number of users and amount of utilization (traffic on the
network) during those particular time frames obviously play a critical role in that regard.

Table 3.2: Packet Captures
Capture Time Capture Kilo Mega Description
Number Period Duration Packets Bytes
Capture 1 20Sep12 10hrs 6475.6 4779.6 NPS users + injected URLs
Capture 2 28-29Nov12 46hrs 608.5 6805.9 NPS users only
Capture 3 07Mar13 24hrs 1650.2 3969.8 NPS users + injected URLs
Capture 4 08Mar13 24hrs 650.3 1985.2 NPS users + injected URLs

3.2.1 Capture 1
The first series of captures, conducted on 20SEP2012, incorporated the use of the Fetcher pro-
gram created by Nolan [5], which is used to “fetch” web addresses (hosts) that have been ex-
tracted from our external honeypot. See figure 4.1 for the overall flow process.

Once we initiate a packet capture session, we simultaneously use Fetcher to actively fetch or
visit the URLs that were acquired from the honeypot, which we consider to be malicious in
nature. In this test, we fetch 2,983 malicious URLs, the flows of which are mixed with the
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normal user traffic being captured at NPS. Though the honeypot URLs are initially considered
malicious, we further manually remove hostnames that are actually non-malicious (which can
occur when spammers utilize real URLs within spam messages). Table 3.5 provides details
associated with the URLs injected by Fetcher.

Considering that a majority of the traffic outbound from the NPS network is not destined for
abusive infrastructure, simply due to the nature of a military environment at the institution and
the expectations levied on those using the network resources, it was necessary to introduce a
variety of suspected malicious URLs to perform our analysis on. We utilize Fetcher for this
task. During our capture process, Fetcher initiates port 80 calls to each of the hosts previously
discovered from our honeypot, thus allowing that flow to be present in the capture. By utilizing
Fetcher, we have a much greater certainty of encountering malicious content than without. This
approach resulted in over 36GB of data to be used for our first series of tests. Additional details
regarding Fetcher and the data processed are discussed in section 3.3.3.

3.2.2 Capture 2
In our second set of packet captures, which ran for 46 hours (28-29Nov2012), we acquired over
33GB of data, spanning 92 saved .pcap files containing 608,409 hosts names and 2,419,532
individual flows of traffic. See figure 4.2 for the overall process flow.

For these captures, we did not want to introduce any additional URLs from our honeypot. The
decision to capture only NPS traffic was in order to evaluate our methods and have a baseline
test where we process only school traffic. This allows us analyze how well our classification
process works in our testing phase, when there is generally not a large amount of malicious
traffic.

Captures 3 and 4 will again introduce Fetcher injected URLs into the the capture process and
the data is provided in table 3.2.

3.3 Programmatic Functions
Here we detail the processes performed to extract flows from our packet captures and the pro-
grammatic functions of MWID’s specialized sub-routines (programs) that analyze and classify
the traffic flows. Table 3.1 is provided as a quick reference for the programs used and function-
ality of each.
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3.3.1 Traffic Features
Once we have obtained our packet captures, we must then process each .pcap with our TTAD
program, which provides per-flow traffic characteristics and features. See table 3.3 for a detailed
list of the specific traffic features we utilize. Once the .pcap files are processed, we accumulated
distinct flows of traffic and output to ttad.out.

Table 3.3: TTAD Transport Traffic Features
Feature Description
pktsin Packets in from source and MTA
pktsout Packets out to source and MTA
rxmtin Retransmissions in from source and MTA
rxmtout Retransmissions out to source and MTA
rstsin TCP reset segments from source and MTA
rstsout TCP reset segments to source and MTA
finsin TCP segments with FIN bit set from source and MTA
finsout TCP segments with FIN bit set, to source and MTA
zrwn Number of times the receiver window went to zero
mrwn Minimum receiver window over flow life
avgrwn Average receiver window over flow life
initrcwn Initial receiver window
idle Maximum flow idle time
3whs RTT of the TCP three-way handshake
jvar Inter-packet arrival variance
rttv Per-segment RTT variance
tdur Flow duration (seconds)
wss TCP SYN window size
syn TCP SYN packet size
idf Do not fragment the IP bit
ttl Arriving IP time to live

An example output of the 21 distinct features that TTAD produces is provided in figure 3.2. All
values are comma separated.

Figure 3.2: Example Traffic Features Extracted by TTAD.
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The first two sets of numbers provided by TTAD (i.e., 1705268294:80:2358812342:5256) rep-
resent the 32 bit integer format of the destination and source IP addresses and associated port
numbers. The remaining numbers that make up the distinct characteristics for a particular flow
follow the order of items as listed in table 3.3.

3.3.2 TCP Headers
Once we have processed the .pcap files to gather per-flow traffic features using ttad, we then
process the same .pcap files using our mwid_pcap program. mwid_pcap reads in each
flow of data from the .pcap file and extracts key header information, to include the destina-
tion and source IP addresses, destination and source ports, and HTTP-host name. In general,
mwid_pcap utilizes a Python programming library known as dpkt, which is an ethernet packet
decoding module that decodes single network packets and allows access to individual segments
of the packet (i.e., destination IP, source IP, port numbers, host name, etc.).

Once we have processed all of the flows and obtained the necessary information in each packet,
the information is output in a specific format to a hosts.out file. The output format is key in how
we later process this data §3.3.3. An example of the output data is shown in table 3.4.

Table 3.4: TCP Header Information
Host Name Source IP Destination IP Src Port Destination Port

www.pandora.com 172.20.xxx.xxx 208.85.40.80 60057 80
www.amazon.com 172.20.xxx.xxx 72.21.194.212 51204 80

. . . . . . . . . . . . . . . . . . . .

3.3.3 Host Labeling
We now take the hosts.out file produced by mwid_pcap and process it using our mwid_label
program. The purpose of the program is to determine the appropriate label for each flow, which
is “GOOD,” “BAD” or “UNKNOWN.” To determine the proper labeling, the program reads
each individual line of the input file, takes the hostname and destination IP and performs lookups
against several well-known online RBL sites and local databases. Specifically, the host names
are processed using Spamhaus [21], Phishtank [24] and Malware Domain [23] RBLs.

Not only are we using multiple block-list sites to check each host name in our list, but we also
perform an additional check of each flow by using the destination IP and process each using a
corresponding RBL catering to IP address searches. These RBLs are SORBS [22] and ZEN,
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which are offerings from Spamhaus. By doing so, this gives us a better confidence level as to
the appropriate classification label for each flow.

Additionally, the hosts are checked against the Alexa top 1 million sites list [25] for a baseline of
presumably good web hosts. For the remainder of this paper, the terms “host names” and “hosts”
are synonymous, as well as “block-list” and “black-list,” which will be used interchangeably.
Additional details concerning the RBLs and Alexa are discussed in §2.4.

Once we have processed all of the traffic flows, each flow is appended with two additional
pieces of data, the name of the RBL reporting the site or IP as malicious, or Alexa if the site is
non-malicious, followed by the appropriate label. A sample of the label flow is:

redditenhancementsuite.com,172.20.106.150,96.126.125.231,54256,80,ALEXA,GOOD

www.jamaicaobserver.com,172.20.109.160,208.88.246.123,55035,80,ALEXA,GOOD

tnt.doctorflig.ru,172.20.109.183,84.22.127.36,49317,80,SPAMHAUS,BAD

www.1.dat-e-baseonline.com,172.20.110.125,66.186.15.226,50658,80,,UNKNOWN

biwqrqr.mathdoctor.ru,172.20.109.183,84.22.127.36,54057,80,SORBS,BAD

As is evident in the above sample output, each flow has the appended with the name of the
RBL or Alexa, as appropriate, and the label for that flow. The host name tnt.doctorflig.ru, for
example was found on the Spamhaus RBL and is labeled as “BAD.” The hosts that were found
listed on Alexa are subsequently labeled as “GOOD.” Any host name not found on a black-list
or not found listed on Alexa are simply labeled as “UNKNOWN.”

In table 3.5, we provide a summary of the preprocessed URLs that we use with Fetcher as injects
during our packet captures routine.

Table 3.5: Fetcher Processed URLs
Test URLs Unique Flows Good Bad Unknown Alexa Conflicts

Test 1 1,179 57 278 844 61 4
Test 2 ** Fetcher not used for test 2 **
Test 3 3,766 36 3,195 535 38 2
Test 4 2,971 16 1,870 1,085 20 4

One interesting observation from our data labeling is the appearance of conflicts during our
tests. These are where we find a host or IP address on both a black-list and on the Alexa list.
In such cases, we default to labeling the flow as “BAD.” We will discuss these more in-depth in
Chapter 4.

26



Table 3.6 provides details of each packet capture session we processed and the overall results.

Table 3.6: Processed Capture Details
Captures Unique Flows Good Bad Unknown Alexa Conflicts
Capture 1 21,083 1,243 5,762 14,078 1,246 3
Capture 2 9,029 1,648 22 7,359 1,656 8
Capture 3 8,468 1,751 1,095 6,178 1,099 4
Capture 4 6,322 377 2,948 2,997 382 5

In both tables, we refer to the number of flows used as “unique,” which is not indicative of the
total number of flows reviewed, but simply refers to flows that are not duplicated. By duplicated,
we mean that when we encounter two flows with the same host name. We only count and use
one of the host names and associated IP addresses to do the search on an RBL or Alexa.

Fetcher Data
As discussed in section 3.2.1, Fetcher was utilized to inject flows of traffic into our capture pro-
cess to help increase the number of malicious hosts encountered. Prior to performing the actual
captures, we “preprocessed” a list of URLs extracted from our honeypot using mwid_label.
Those results are included in Table 3.5 This was in order to give us a better insight and ground
truth into the number of actual known “bad” hosts that were presently identified via blocklists
as it relates to the honeypot data as a whole. We expect most flows recovered from our honeypot
to be malicious and by determining whether the flows do in fact currently reside on a blacklist
or how our methods identify them is key. Thus, these results are important as we will use them
as an additional tool in our validation phase to help determine how accurately our classifier
performs at labeling our data.

3.4 RBS and Alexa
This section is provided in order to help clarify some of the data in table 3.6. It is important
to understand that mwid_label takes in list of data flows from hosts.out, where the data is
divided into separate categories: host names and destination IP addresses associated with each
host name.

While all host names are processed through Spamhaus, Malware Domain and Phishtank, the
number of IP addresses processed through SORBS and ZEN will vary and will depend on
certain variables encountered as the data is processed. Since multiple IP addresses can be asso-
ciated with one host name, there will be a difference in the number of hosts that are processed
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as opposed to the number of IP addresses processed. Additionally, because the IP addresses are
resolved by SORBS and ZEN separately, the numbers associated with each will generally not
match, as some IPs would not resolve or timeout.

Aside from Alexa, which simply lists the total number of addresses found during a particular
session, the RBLs will have listed the total of “BAD” sites that were found, “GOOD” sites that
were found as they appeared on Alexa and not an RBL, and the “UNKNOWNS,” which did not
meet the good or bad criteria.

Additional details concerning RBLs and Alexa can be found in Chapter 2 2.4.

3.5 Flow Feature Labeling
We now take our two output files, flows.out which has our labeled host names and ttad.out which
contains all of the flows produced by ttad, and process them both using our mwid_merge
program. This program takes the input files and labels the traffic flows by simply comparing
each flow from ttad.out with that of the same tuple keys in our flows.out file.

Referring to the features in figure 3.2, when TTAD saves each flow to ttad.out, the IP addresses
are in a 32 bit format along with the port numbers and associated flow features. mwid_merge
will take each flow and strip the tuple of IP addresses and associated port number, convert the
IP addresses into a dotted-decimal notation, and append the new tuple to the head of the flow.
The tuple now consists of a destination IP address, destination port number, source IP address,
and a source port number (i.e., 172.0.0.2:80:180.1.1.4:2413), and are the key distinguishing
characteristic for a particular flow of traffic features. We then read each line item of data from
flows.out and use the associated tuples to compare to the tuples in each line of the ttad.out data.
When performing this comparison, if the two match - meaning the tuples are the same, the flow
features are appended with the appropriate label. All flow features that are labeled “GOOD”
and “BAD” are saved to an output file labeled.csv, which will be utilized in out testing phase as
our training data. Those flows that are labeled as “UNKNOWN” are saved to a separate output
file unknown.csv and will be our testing data during the testing phase.
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CHAPTER 4:
Results

In this chapter, we cover our testing method and results from processing all of the data sets
collected and analyzed from the four real-world packet captures. We first discuss the classifier
and methods used to classify our data. We then discuss the testing process and describe the
results of each individual test we conducted, to include a unique “Hybrid” test that trains and
tests on different captures. These initial analyses reveal how well MWID performs relative to
the RBLs. We continue by discussing the manual sampling technique that was performed on
flows unknown to the RBLs, which was used to obtain ground-truth labels and evaluate our
larger hypothesis that MWID is complimentary to existing techniques. Finally, we conclude
with a summary of concerning conflicts and present a method of resolution.

4.1 Testing
Using mwid_class, which invokes the use of a third-party software suite called Orange [15],
we perform statistical analysis on our data while training the classifier. The labeled.csv file is
used as our training data and once the file is processed and the learning is complete, we then
input the unknown.csv file as our testing data for classification. During the statistical analysis
process, we use two well-known supervised learning algorithms (classifiers) to process our data,
Naïve Bayes and Decision Tree, which are both invoked using Orange.

4.1.1 Learner/Classifier
During the classification process, we perform a series of analyses to determine the accuracy
of MWID on our real-world capture data. There are two modes or process levels that the
learner/classifier will process in. First is the training mode, where the learner is “learning or
training” on the input data. Second is the testing mode, where the classifier actually “classifies
or tests” the input data, based off of the model built from training data. The following training
and testing processes occur:

1. Train and test on the (same data set).
• Basic analysis that simply evaluates the performance of the learned model on itself

as a sanity check.
2. 10-fold (10x) Cross Validation (CV) (same data set).
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• Evaluates the performance of MWID relative to the RBLs and Alexa ground-truth.
• Breaks the data into 10 sets of size n/10.
• Trains on 9 data-sets and test on 1.
• Repeats the process 10 times.
• Takes the mean accuracy of all the processes.

3. Train and test on separate data.
• Use MWID to classify flows unknown to the RBLs or Alexa. Requires manual

sampling to obtain ground-truth and evaluate performance.
• “GOOD” and “BAD” labeled data used as training data.
• “UNKNOWN” labeled data is used as testing data.

Performance metrics that are reported include the CA, precision or Positive Predictive Value
(PPV), recall or Sensitivity (SENS), and the F1 Score, which is the measure of our test’s overall
accuracy, considering both the PPV and SENS.

The metric values are derived from the following formulas:

• SENS (recall) = TP/(TP + FN)

• PPV (precision) = TP/(TP + FP )

• Accuracy (ACC) (accuracy) = (TP + TN)/(TP + TN + FP + FN)

• F1 score = 2 ∗ (PPV ∗ SENS)/(PPV + SENS)

We define the following:

• True Positive (TP) – a “GOOD” flow correctly labeled as a “GOOD”
• True Negative (TN) – a “BAD” flow correctly labeled as “BAD”
• False Positive (FP) – a “BAD” flow incorrectly labeled as a “GOOD”
• False Negative (FN) – a “GOOD” flow incorrectly labeled as a “BAD”

4.2 Testing Sets
In each of the different testings we conduct, we wanted to test several key hypotheses. First,
show that traffic features and characteristics associated with flows of traffic can in fact be used to
classify data accurately. Second and most importantly, positively classify previously unknown
data flows as malicious, given no prior knowledge of the flow, and where the host or IP address
has not been previously identified by other means or found on an RBL. In this process, we
performed four separate tests on different packet captures and include 3 additional unique tests
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to further meet our objectives. Table 4.1 summarizes the data we are use for training and testing
of our classifier, along with its complexion.

Table 4.1: Composition of labeled.csv and unknown.csv Files
Data Set File Name Total Flows Good Bad
Capture 1 labeled1.csv 61843 55877 5966

unknown1.csv 287730 – –
Capture 2 labeled2.csv 28984 28745 239

unknown2.csv 357544 – –
Capture 3 labeled3.csv 15356 13632 1724

unknown3.csv 176601 – –
Capture 4 labeled4.csv 7815 4003 3812

unknown4.csv 41303 – –

In a spin-off from how our original tests were conducted, and based off of the overall results
from all tests, we find it interesting to experiment with mixed data among the test sets.

Specifically, we take the reclassed.csv file from one test and use it as our training set for the
unknown.csv data from one of the other tests. We cover such hybrid testing in §4.3.

4.2.1 Test 1
In test one, working with first set of captures, we perform the basic routine of training our
classifier on the labeled data contained in the labeled1.csv file, which contains 61,843 distinct
flows of traffic. There are 55,877 flows that are labeled as “GOOD” (90%), as they appeared
on the Alexa list and not found on the RBLs and 5,966 that are labeled “BAD” (10%) where
they were in fact found on a RBL. The testing methodology that MWID performs for test 1 is
provided in figure 4.1.
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Figure 4.1: MalWebID Programmatic Flow for Capture 1.
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Table 4.2: Test One - Prediction Accuracy
Learner CA PPV SENS F1
Bayes 94.3% 99.1% 94.6% 96.8%
Tree 99.3% 99.7% 99.6% 99.6%

Table 4.3: Test One - Confusion Matrix
True Positive False Negative

55645 232
False Positive True Negative

188 5778

Using our classifiers, we perform a series of analysis to determine the accuracy of our classifiers.
In the basic analysis, training and testing on the same data set, Bayes recorded an accuracy of
93.8% while the Decision Tree logically performed better, attaining a 100% CA.

In the follow-on test, involving 10x CV, Bayes shows a slight improvement with a 94.3% CA
while Decision Tree drops slightly to a 99.3% CA. See table 4.2 for test 1 specifics on CA,
PPV, SENS, and the F1 Score.

We provide a confusion matrix, table 4.3, to demonstrate how well MWID performed using
labeled data to train and test, prior to actually testing on the unknown data for classification.
While we expect that this test to do well overall, we perform it to ensure that the learner/classifier
model works well on itself.

The accuracies of both classifiers show promise and are both initially used in our follow-on
classification of the ‘UNKNOWN’ data. Here, we are working with 287,730 “UNKNOWN”
flows of traffic. We begin by processing the data using our classifier program mwid_class,
where we first train the classifier using the labeled flows in the labeled1.csv file. Once complete,
we then use the classifier to test on the flows of “UNKNOWN” traffic in the unknown1.csv file.
At this point, all of the unknown flows are reclassified and labeled, with the results output to the
reclassed1.csv file.

During this process, we discover that the naïve Bayes algorithm does not perform as well as ex-
pected when attempting to classify the “UNKNOWN” data set. We made the decision to remove
the algorithm from our testing and to proceed with using only the Decision Tree algorithm.

Once the classification process is finished, all of the previous 287,730 unknown flows of data are
labeled and output to reclassed1.csv. There are 8,638 flows that are labeled as “BAD” (3.0%)
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Table 4.4: Test Two - Prediction Accuracy
Learner CA PPV SENS F1
Tree 98.6% 99.4% 99.3% 99.3%

Table 4.5: Test Two - Confusion Matrix
True Positive False Negative

28534 211
False Positive True Negative

184 55

and 279,092 labeled as “GOOD” (97.0%). In section 4.4.1 we perform the statistical analysis
on our reclassified data to determine the accuracy, how well we did, at classifying the unknown
data.

4.2.2 Test 2
In our second test, working with the second set of packet captures, we again perform the same
testing scheme as performed in test 1, training our classifier on the new labeled data in the
labeled2.csv file, which contains 28,984 distinct flows of traffic. There are 28,745 that are
labeled as “GOOD” (99.2%) and 239 that are labeled “BAD” (8.0%). The testing methodology
that MWID performs for test 2 is provided in figure 4.2.

The number of “BAD” flows found here is actually surprising, given that no Fetcher URLs
were injected for this test set. As previously mentioned, given the environment of a military
institution where we perform our packet captures, it is less likely that abusive sites are visited
on a regular basis. Using our classifier, we again perform an accuracy analysis by training and
testing on the same data set, to look at how well the classifier performs. Absent Bayes, the
Decision Tree again performed well, attaining a 100% CA in all anaylsys and 98.6% CA with
the 10x CV test. The overall results can be seen in table 4.4.

In table 4.5 we provide a confusion matrix from our second test, which is the the result of
training and testing on the same set of data. This step was performed, as with all other tests,
to understand how well our classifier is performing before testing on the actual “UNKNOWN”
data.

Now, only using the Decision Tree as our classifier for the follow-on classification of the “UN-
KNOWN” data, we’re working with 357,544 “UNKNOWN” flows of traffic. We first train
our classifier using the labeled flows in the labeled2.csv file. Once complete, we then process
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Figure 4.2: MalWebID Programmatic Flow for Capture 2.

our unknown2.csv as the test data. The results are output to the reclassed2.csv file. Of the
357,544 reclassified flows of data, there are 4,427 flows that are labeled as “BAD” ( 1.0%) and
353,117 labeled as “GOOD” (99.0%) In section 4.4.2 we perform the sampling analysis on our
reclassified data to determine accuracy.

4.2.3 Test 3
In our third test case, we are working with the third set of packet captures that contain Fetcher
injected flows of traffic. These fetcher flows were obtained from our honeypot just prior to the
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Table 4.6: Test Three - Prediction Accuracy
Learner CA PPV SENS F1
Tree 97.0% 98.4% 98.2% 98.3%

Table 4.7: Test Three - Confusion Matrix
True Positive False Negative

13383 249
False Positive True Negative

217 1507

test, as to help ensure that they were fresh with respect to the host URLs and associated IPs
being valid. As with most of the URLs taken from the honeypot, they will go stale or become
invalid after a few days. This means that the site is no longer available, which we discovered
can mean the site has been taken offline, suspended (i.e., violation of terms, non-payment, etc.),
or no longer resolves to a usable site (i.e., blank screen). Additionally, considering the sites
do not remain valid for a long period of time, in most cases, our assumption is the faster we
can perform the tests using fresh data, we increase the odds of the malicious hosts not being
documented on a black-list. The testing methodology that MWID performs for test 3 is provided
in figure 4.3.

Moving on to our test, we again perform the same testing scheme as before, training our clas-
sifier on the new labeled data in the labeled3.csv file, which contains 15,356 distinct flows of
traffic, of which there were 13,632 that were labeled as “GOOD” (89.0%) and 1,724 that were
labeled “BAD” (11.0%)

Using our classifier, we again perform an accuracy analysis by training and testing on the same
data set. The Decision Tree continued to perform well in most of the test with a 100% CA. It
dropped slightly in this round of testing when performing a 10x CV, with and overall CA of
97%. The overall results can be seen in table 4.6.

In table 4.7 we provide a confusion matrix from our third series of tests, prior to training on the
unknown data.

Of the 176,601 flows that are reclassified, there are 4,393 flows that are labeled as “BAD”
(2.0%) and 172,208 labeled as “GOOD” (98.0%). In section 4.4.4 we perform the statistical
analysis on our reclassified data to determine the classifiers accuracy.
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Figure 4.3: MalWebID Programmatic Flow for Capture 3.

4.2.4 Test 4
In our fourth and final test case, we are working with the fourth set of packet captures that
contain new Fetcher injected flows of traffic. Like in test 3, these new flows were obtained from
our honeypot just prior to the test to help ensure freshness, as described above. The testing
methodology that MWID performs for test 4 is provided in figure 4.4.

Performing the same testing scheme as before, we train our classifier on the new labeled data in
the labeled4.csv file, which contains 7,815 distinct flows of traffic, of which there were 4,003
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Figure 4.4: MalWebID Programmatic Flow for Capture 4.

that were labeled as “GOOD” (51.0%) and 3,812 that were labeled “BAD” (49.0%).

Using our classifier, we again perform an accuracy analysis by training and testing on the same
data set. We found the same exact CA with our classifier as seen in test 3, but a very slight
change in the overall CA, which was 96.9%. These results can be seen in table 4.8.

Again, we provide a confusion matrix in table 4.9 from our third series of tests, prior to actual
testing on the unknown data.
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Table 4.8: Test Four - Prediction Accuracy
Learner CA PPV SENS F1
Tree 96.9% 97.0% 96.9% 96.9%

Table 4.9: Test Four - Confusion Matrix
True Positive False Negative

3877 126
False Positive True Negative

120 3692

Of the 41,303 flows that are reclassified, there are 2,994 flows that are labeled as “BAD” (7.0%)
and 38,309 labeled as “GOOD” (93.0%). In section 4.4.5 we perform the statistical analysis on
our reclassified data to determine the classifiers accuracy.
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4.3 Hybrid Testing
Having completed the initial round of testing, we were curious as to what would happen if we
were to combine different aspects of our tests together and if that would effect change with
respect to the outcome of classifying our data. To this end, we specifically looked at taking the
reclassed#.csv data from one test series and using it as our training data for our classifier, while
using an unknown#.csv from a separate test to perform our classification test on. Figure 4.5
shows the hybrid testings scheme and data process flow.

Figure 4.5: MalWebID Programmatic Flow for Hybrid Test.
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Table 4.10: Hybrid Test (1 and 2) - Prediction Accuracy
Learner CA PPV SENS F1
Tree 97.3% 98.7% 98.5% 98.6%

Table 4.11: Hybrid Test - Confusion Matrix
True Positive False Negative

278452 640
False Positive True Negative

559 8079

We decided on utilizing our first two series of tests for this experiment, primarily because of
the length of time between the packet captures and because of one test having Fetcher injected
traffic while the other did not. The reclassed1.csv data set from test 1, containing 287,730 flows,
is used as our training set. Of these flows, 279,092 were labeled as “GOOD” (97.0%) and 8,638
were labeled as “BAD” (3.0%). From test 2, we use the unknown2.csv data for our test set,
which contained 357,544 “UNKNOWN” flows.

Once processed, we noted that aside from the normal testing criteria that yielded a 100% CA
from our classifier, the level of accuracy shown after a 10x CV test was impressive, rendering a
99.6% overall CA. Table 4.10 refers.

The confusion matrix is provided in table 4.11, which too shows how well our classifier per-
formed, using reclassed1.csv data to train, prior to testing on the unknown2.csv data.

4.4 Sampling Analysis
Given our results from each test, we now focus on the reclassified data in each of our re-

classed.csv files, where the previous “UNKNOWN” traffic is now labeled either “GOOD” or
“BAD.” A key focal point in our analysis is to determine how well our classifier performed in
predicting the correct label for a flow of traffic, based off of the statistical analysis performed
on all of the individual traffic flow features.

To assess performance, we perform manual inspection on a random set of hosts from both the
data in each reclassed.csv files from each test set and of the host lists that was obtained from
our honeypot. This manual inspection gives us an accurate accountability as to the performance
of our classifier. We provide a confusion matrix for each manual inspection result and indicated
the overall ACC, PPV or precision, SENS or recall and provide the F1 score (harmonic mean).
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When we conduct a manual sampling of the data, we physically visit each website to make the
final determination as to the actual type of infrastructure present. Determination was centered
around the following criteria when visiting websites:

• Malicious (BAD)

– resolve to a malicious site (i.e., Porn, Rx/Pharmaceutical, illegal activity, etc.)
– propagate or contain viruses, spyware, or other harmful programs, participate in

spamming or any type of illegal activity
– reported as an attack site by search engine (i.e., Google)
– multiple redirections to alternate sites (i.e., spam sites)
– suspended sites (by domain administrator), generally spam related

• Non-Malicious (Good)

– resolve to a functional, non-threatening, well-behaved website that does not exhibit
the behaviors or indications as mentioned above

4.4.1 Test 1 - Manual Inspection
Prior to performing the manual inspection on the test 1 data, we performed a manual inspection
of the “pre-processed” URLs that were injected into the test 1 captures.

Fetcher Analysis - Test 1
We utilized Fetcher to inject 2,983 hosts, taken from our honeypot, into our packet capture
routine. Of these hosts, we pre-processed them and know in advance that 1,804 (60.0%) of the
hosts were duplicates and thus removed. Of the 1,179 remaining, 278 (23%) exist on a black-
list and marked as malicious, 57 (5.0%) appear on Alexa’s list and marked as non-malicious,
and we are left with 844 (72.0%) unknown, which we assume are malicious for the purpose of
our analysis. Looking at the labeled data from test 1, we compare the labels with the list of
malicious URLs from the honeypot. We identified 1,417 flows in the list that matched.

Of the 1,417 flows, 872 are labeled as “GOOD” (62.0%) and 545 are labeled “BAD” (38.0%).
Performing a manual inspection of each host labeled as “BAD,” we found that 510 were in
fact malicious and 35 were non-malicious sites. Considering the size of those flows labeled at
“GOOD,” we take 100 randomly selected flows and perform a manual inspection of each. 94
were found to be non-malicious while 6 were found to be malicious. The confusion matrix in
table 4.12 is provided for reference, with performance metrics given in table 4.13.
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Table 4.12: Fetcher - Manual Sample Confusion Matrix
True Positive False Negative

94 35
False Positive True Negative

6 510

Table 4.13: Fetcher - Manual Sample Results
ACC PPV SENS F1
93.6% 94.0% 72.8% 82.1%

Table 4.14: Test 1 - Manual Sample Confusion Matrix
True Positive False Negative

90 9
False Positive True Negative

10 91

Table 4.15: Test 1 - Manual Sample Results
ACC PPV SENS F1
90.5% 90.0% 91.0% 90.5%

Test 1 Analysis

Looking at the reclassed1.csv file, of the 287,730 “UNKNOWN” flows that were processed and
labeled, 8,638 were labeled as “BAD” (3.0%)with the remaining 279,092 labeled as “GOOD”
(97.0%). Focusing on those flows that were labeled as “BAD,” we take a random sample of
200 for manual inspection: 100 “GOOD” and 100 “BAD” flows. Of 100 “GOOD” flows, there
were 10 found to be improperly labeled, as they resolved to malicious sites. Of the 100 “BAD”
flows, there were 9 found to be non-malicious and improperly marked. Of the 91 flows that
were truly malicious, all 91 were found on the host file we used originating from our honeypot.

The confusion matrix in table 4.14 is provided for reference. From the manual inspection of the
200 flows, the results are seen in table 4.15.

Here we are already showing positive results toward proving that our method of discriminating
live traffic data is capable of detecting previously unknown malicious hosts, solely based off of
the features gathered from each individual traffic flow.
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Table 4.16: Test 2 - Manual Sample Confusion Matrix
True Positive False Negative

50 49
False Positive True Negative

0 1

Table 4.17: Test 2 - Manual Sample Results
ACC PPV SENS F1
51.0% 50.5% 100% 67.11%

4.4.2 Test 2 - Manual Inspection
In test 2, we have 357,544 “UNKNOWNS” that were reclassified, 4,427 “BAD” (1.0%) and
353,117 “GOOD” (99.0%). Because there are no Fetcher injects for this test, we take and
manually sample 100 random hosts from the reclassed2.csv file, 50 “GOOD” and 50 “BAD.”
Of all 100 sampled hosts, there were 1 malicious sites discovered and was properly labeled as
“BAD.” All 50 “GOOD” were in fact non-malicious, and 49 of those hosts labeled as “BAD”
were in fact non-malicious.

Overall, the results are not very surprising, considering it is indicative of the environment at
NPS and that of a military installation, where it is less likely to encounter an enormous number
of abusive web sites. However, this outcome is very good, considering an environment where
the overwhelming majority of network traffic is non-malicious, with no Fetcher injected URLs,
we were able to positively identify and properly classify a malicious site that has not been
reported on any of the RBLs that we are using! Table 4.16 and 4.17 provides our results.

4.4.3 Hybrid - (Test 1 & Test 2) Manual Inspection
Looking at the data collected during the hybrid test, we were anxious to see what would be the
effect on the actual classification of our data. Figure 4.5 shows the hybrid testing method we
used.

The outcome has 3,446 flows classified as “BAD” and 354,098 as “GOOD.” We take and manu-
ally sample 200 random hosts from the new reclassed2H.csv file, 100 “GOOD” and 100 “BAD.”
Of all 200 sampled hosts, there were no malicious sites discovered, which again given that we
are using the test 2 data with no Fetcher injects, is understandable. The interesting aspect here
is the change in the number of hosts that were labeled as “BAD” in this test, as opposed to the
original test 2 reclassed2.csv output of 4,427 “BAD,” which decreased by 981.
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Table 4.18: Hybrid Test - Manual Sample Confusion Matrix
True Positive False Negative

100 100
False Positive True Negative

0 0

Table 4.19: Hybrid Test - Manual Sample Results
ACC PPV SENS F1
100% 100% 50.0% 66.7%

Table 4.20: Test 3 - Manual Sample Confusion Matrix
True Positive False Negative

636 124
False Positive True Negative

2 8

This was an interesting discovery, as it clearly demonstrates that by training the classifier on
data flows that truly are malicious, given the distinct feature vectors of those flows, allows
the classifier to predict with greater accuracy when labeling the unknown data formats. See
Table 4.18 and table 4.19 for the results.

4.4.4 Test 3 - Manual Inspection
In test 3, we again utilized Fetcher to inject 5,177 malicious hosts from our honeypot into
our packet capture routine. After pre-processing, 1,411 (27.0%) of the hosts were duplicates
and thus removed. Of the 3,766 remaining, 3,195 (85%) exist on a black-list and marked as
malicious, 36 (1.0%) appear on Alexa’s list and marked as non-malicious, and we are left with
535 (14%) unknown, which default to malicious.

Analyzing the newly labeled data from test 3, we performed a comparison of the labeled data
with that of the malicious host list that we obtained from our honeypot. We identified 770
flows that matched and are marked for manual inspection. Of the 770 flows, 638 are labeled as
“GOOD” (83.0%) and 132 are labeled “BAD” (17%).

After manually sampling all 770 flows, we find that 8 flows that are marked as “BAD” are in
fact truly malicious. 124 actual non-malicious site are improperly labeled as "BAD," 636 sites
are properly labeled as “GOOD” and finally there are 2 “BAD” that were incorrectly labeled as
“GOOD.” Table 4.20 refers.
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Table 4.21: Test 3 - Manual Sample Results
ACC PPV SENS F1
83.6% 99.7% 83.7% 91.0%

Table 4.22: Test 4 - Manual Sample Confusion Matrix
True Positive False Negative

1042 486
False Positive True Negative

3 108

Table 4.23: Test 4 - Manual Sample Results
ACC PPV SENS F1
69.3% 99.7% 68.2% 81.0%

We’ve now discovered and correctly labeled 8 malicious sites that were previously unknown to
any black-list. From the manual inspection of the 770 flows, the results are seen in table 4.21

4.4.5 Test 4 - Manual Inspection
In final test 4, we utilize Fetcher to inject 6,957 fresh malicious hosts from our honeypot into
our packet capture routine. After pre-processing, 3,986 (57.0%) of the hosts were duplicates
and thus removed. Of the 2,971 remaining, 1,870 (62.5%) exist on a black-list and marked as
malicious, 16 (.5%) appear on Alexa’s list and marked as non-malicious, and we are left with
1,085 (37.0%) unknown, which default to malicious.

Analyzing the newly labeled data from test 4, we perform a comparison of the labeled data with
that of the malicious host list that we obtained from our honeypot. We identified 1,660 flows
that matched and are marked for manual inspection. Of the 1,660 flows, 1,066 are labeled as
“GOOD” (64.0%) and 594 are labeled “BAD” (36.0%).

After manually sampling all 1,660 flows, we find that 108 flows that are marked as “BAD”
are in fact truly malicious. 486 good flows are improperly labeled as "BAD," 1,063 flows are
properly labeled as “GOOD” and finally there are 3 “BAD” flows that were incorrectly labeled
as “GOOD.” Table 4.22 refers. From the manual inspection of the 1,660 flows, the results are
seen in table 4.23

This was an extremely encouraging result, considering we were able to positively identify 108
previously unknown malicious hosts, none of which were currently found on any of the RBLs
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that we were searching.

4.4.6 Conflicts
There are two type of conflicts that must be addressed that were discovered during our research.

List Conflicts
As shown in Chapter 3, we discovered the presents of conflicts as a result of hosts or IP ad-
dresses appearing on two different lists that we are using to determine appropriate labels for our
data. Specifically, the host or IP resides on both a black-list and on the Alexa list.

Of the 20 conflicts discovered over the course of our experiments, all were found to be non-
malicious in nature.

• 3 conflicts discovered in test 1
• 8 conflicts discovered in test 2
• 4 conflicts discovered in test 3
• 5 conflicts discovered in test 4

This is a great example of how black-lists in general can be inaccurate at times, considering the
manner by which they are updated and managed. In these particular instances, the Alexa list
of our presumed “GOOD” sites was indeed accurate. This is also a perfect example of where a
tool such as MWID would be very useful.

Reclassified Data Conflicts
Another understood conflict that we discovered was with the results of the reclassification of our
"UNKNOWN" data sets. The conflict occurs when we have multiple traffic flows that resolve
to the same host name, but are differentiated by another factor, such as the source port number
or destination IP address. For example:

0.gravatar.com 72.21.91.121:80:172.20.105.136:55432 BAD

0.gravatar.com 72.21.91.121:80:172.20.106.125:1986 GOOD

latesummergifts.ru 180.70.9.31:80:172.20.109.183:45972 BAD

latesummergifts.ru 180.70.9.31:80:172.20.109.183:32857 GOOD

In this example, you can see that there are two hosts that are labeled both “GOOD” and “BAD.”
The differences can be associated with the source IP addresses of 0.gravatar.com and the source
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Figure 4.6: Flow Labeling Conflicts

port numbers for latesummergifts.ru. The reason that two different flows with the same host
name and IP addresses can result in a labeling conflict would primarily be because of the fea-
tures that were associated with each of those flows. One set of features will be the statistical
threshold for being classified as a “GOOD” while the next will not. The differences in the fea-
tures can be attributed to many different variables (i.e., network congestion, difference in time
of day, difference in location, etc.).

Considering these types of conflicts in labeling, we build a Cumulative Distribution Function
(CDF), provided in figure 4.6, to help with determining where we would like to implement a
threshold for what is considered good or bad flows. A summary of the conflicts are detailed in
table 4.24. More specifically, the percentages represent a threshold and the numbers under each
of the test areas represent the number of “GOOD” that fall below that particular percentage
mark.

For example, looking at table 4.24 and test 3, if we wanted to know the number of flows where
“GOOD” falls below the 50% mark, it would be 67 flows. Further examples can be seen below,
looking at a small subset of flows from test 3, the number of flows labeled as “GOOD” are
below the 50% threshold and the “BAD” is greater than 50%. In this case, if we were placing
our threshold on all the data at 50%, then all of these flows would receive a final label of “BAD.”
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Table 4.24: Conflict Percentages
Percentage Test 1 Test 2 Test 3 Test 4

Level Conflicts Conflicts Conflicts Conflicts
100 % 752 1034 698 433
90 % 210 262 332 266
80 % 135 114 235 194
70 % 117 86 202 170
60 % 101 43 158 133
50 % 11 6 67 73
40 % 10 6 56 61
30 % 8 3 34 39
20 % 6 1 14 12
10 % 1 0 4 2

Bad = 14 (0.609), Good = 9 (0.391) - 3cm.kz

Bad = 2 (0.667), Good = 1 (0.333) - action.metaffiliation.com

Bad = 5 (0.625), Good = 3 (0.375) - argus.nul.usb.ve

Bad = 7 (0.700), Good = 3 (0.300) - baec.eu

Bad = 8 (0.571), Good = 6 (0.429) - bestzm.ru

Figures 4.7, 4.8, 4.9 and 4.10 are provided and display the conflict numbers above 50% for
each test.

4.5 Classification Examples
In this section we provide examples of our classification results, by category of TP, TN, FP, FN
and provide an additional sample of FN URLs that were of interest, considering they are not
only known non-malicious, but are .mil sites. Due to space limitation, we limit these examples
to only a small subset of the overall data examined.

• TP examples – “GOOD” correctly classified as “GOOD.”
– facebook.com
– google.com
– echoenabled.com
– pandora.com
– weather.gov
– dailymail.co.uk
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– ytimg.com
– newegg.com
– pressdisplay.com
– mediaplex.com

• TN examples – “BAD” correctly classified as “BAD.”

– acf.mediccella.ru
– acg.nimdoctor.ru
– acx.doctorghos.ru
– awoxiyn.giigagbu.getbigg.ru
– azpj.doctorpes.ru
– azs.pinkdoctor.ru
– azskxg.doctornode.ru
– aztecpk.medicfles.ru
– azzuukh.swanmedic.ru
– mydrugstorerx.com

• FP examples – “BAD” incorrectly classified as “GOOD.”

– focydu.igynu.buyheragift.ru
– fohe.donuisai.summergifts.ru
– cyoxeuq.dotdte.summer2012watches.ru
– exatiav.fbewytywi.rolexsummersale.ru
– i.viwmwyr.tk
– itemqualitytop.ru
– mbynd.co
– mcal.ru
– mqtwzd.pochta.com
– opo.co

• FN examples – “GOOD” incorrectly classified as “BAD.”

– a1128.g.akamai.net
– edt02.net
– espncdn.com
– fluidra.com
– idmel.e-bamboo.fr
– lh3.googleusercontent.com
– mapbox.com
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– pinterest.com
– twimg.com
– wunderground.com

• Of Interest, the following (.mil) URLs were classified as “BAD,” but are in fact non-
malicious. This is an example where a host that often experiences considerable periods
of traffic congestion will negatively influence our testing method.

– crl.disa.mil
– iase.disa.mil
– doni.daps.dla.mil
– mail.dodiis.mil
– dma.mil
– defensetravel.dod.mil
– public.navy.mil
– sldcada.disa.mil
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Figure 4.7: Test 1 - Conflict Percentages

Figure 4.8: Test 2 - Conflict Percentages
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Figure 4.9: Test 3 - Conflict Percentages

Figure 4.10: Test 4 - Conflict Percentages
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CHAPTER 5:
Conclusion and Future Work

This section discusses the overall findings of our research and offers suggestions on areas of
future work to advance the state-of-the-art in identifying malicious and abusive infrastructure.

5.1 Conclusion
The goal of our research was to investigate the ability of packet-level TCP transport classifiers
to discover abusive traffic flows, primarily those that are not found via traditional methods (e.g.,
RBL, signature based systems, etc.). Thus, we are most interested in discovering traffic to and
from abusive infrastructure, especially where the abusive infrastructure has not been previously
discovered or documented.

Our approach in testing this hypothesis involved a passive method of traffic analysis, MWID, a
tool set that does not rely on packet inspection for content, C&C signatures, or sender reputation
to discriminate traffic type. MWID leverages prior work in using fine-grained traffic features to
identify discriminating features of communications involving abusive hosts. Of key importance
was understanding the applicability of these methods to live network traffic, which we were able
to obtain from the Naval Postgraduate School campus enterprise network. In total, we analyze
four separate periods of real-world traffic.

We show the ability to discriminate between traffic flows that are abusive or malicious from
those that are non-malicious, without the need for deep packet inspection, thus fully preserving
the privacy of the data.

In contrast to the most recent related prior work [5], which used synthetically gathered data
flows that were known malicious and non-malicious, we analyze “unknown” data flows–flows
whose provenance is unknown to existing systems. Specifically, these unknown data flows are
not listed in RBLs or whitelists, and therefore we do not have an immediate basis or knowledge
of the nature of the host or the infrastructure supporting it. We use our system to predict the label
of each unknown traffic flow, after training on a set of known flows. This provides for a more
realistic approach at identifying and helping defend against not only known hosts and abusive
infrastructure, but infrastructure which is of even greater threat: unknown abusive systems. Our
hope is that this work brings transport-layer classifiers a step closer to operational deployment.
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5.2 Key Results
Our results demonstrate that by utilizing per-packet TCP header information, distinct feature
vectors of each flow, and supervised learning techniques, we are able to identify not only known
abusive traffic, but successfully identify previously unknown forms of abusive traffic. The test
data analyzed encompasses:

• over 119GB of data
• over 9 million flows of traffic
• over 92 million traffic features
• over 2 trillion bytes of information
• 15,117 Fetcher [5] injected URLs were extracted from our honeypot

The key findings of our experiment and results are encouraging:

• MWID’s functionality, and use of RBLs in combination with Alexa to appropriately label
our initial data sets, was accurate, with only a < (.001%) occurrence of a conflict, where
the host could be classified as either malicious or non-malicious (§3.2).
• Our classifier averaged 97.8% CA when training and testing on flows known to the RBLs

and Alexa (i.e., those with “GOOD” and “BAD” labels) (table 4.2).
• Fetcher Manual Inspection in conjunction with the Test 1 - Manual Inspection (§4.4.1)

demonstrated that our method and approach with MWID in utilizing per-flow traffic fea-
tures was successful in identifying previously unknown abusive infrastructure. With the
Fetcher URLs, we positively identify and correctly classify 510 of 545 (94%) of the URLs
from our honeypot that are unknown to the RBLs, resulting in a CA of 93.6%. Further,
we show that in Test 1 (§4.4.1), among a random sample of 100 previously unknown
flows labeled as abusive by MWID, 91 are truly abusive sites as verified through man-
ual inspection. Thus, on unknown flows, MWID empirically provides an overall CA of
90.5%.
• In Test 2 (§4.2.2), with no Fetcher injected URLs, we discover 239 of 28,984 (8.0%)

flows that exist on RBLs and are known “BAD.” This was a surprising result, considering
the military environment of NPS, and we were able to capture and classify the malicious
host traffic on the network. Encouragingly, we successfully classified 55 of the 239 as
abusive. While this only represented 24% of the overall number, the results help prove
our hypothesis.
• In Test 2 (§4.4.2), our results are especially encouraging. Here we discovered and prop-
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erly classified an “UNKNOWN” malicious site that was not injected as part of the Fetcher
operation and was not found on any of the RBLs. We further verified this URL to be an
abusive site through manual inspection.
• Results from tests 3 (§4.4.4) and 4 (§4.4.5) again confirmed our ability to positively iden-

tify previously unknown malicious traffic. We correctly classify 8 and 108 malicious
hosts that were unknown to the RBLs respectively. We again verify the results through
manual inspection to provide ground-truth.

5.3 Future Work
In this section we outline future work that will be beneficial to furthering the research and help
bolster the ability to detect abusive infrastructure.

5.3.1 Algorithms
In our tests we initially started by using two learning algorithms, naïve Bayes and Decision
Tree. However, after initial testing, we discovered that the decision tree performed much better
than naïve Bayes and resulted in a much higher CA, to include a very low FP rate when training
and testing on known labeled data.

First, further work is required to better understand the poor performance of naïve Bayes. Sec-
ond, there exist many other machine learning algorithms. We recommend further experimenta-
tion with these to better understand the feasible classification performance.

5.3.2 Malicious URLs
In Chapter 4 we discussed a concern whereby malicious URLs that we extracted from our
honeypot could become outdated, which may indicate the site is taken off-line, suspended (i.e.,
violation of terms, non-payment, etc.), or no longer resolves to a usable site (i.e., blank screen),
etc.. While we did not attempt to determine a “life expectancy” of these URLs in this research,
we did encounter some that would expire in as little as 3 days.

The fact that such URLs are short-lived prompted the need to manually sample the sites as
quickly as possible. As future work, we plan to characterize the time between a malicious host
being initially discovered by MWID and the time it takes to be added to any of the RBLs (if
ever).

Whether abusive flows unknown to the RBLs are later included by them is important to under-
standing the full utility of MWID. Another avenue of research would include MWID having
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the ability to not only query the RBLs and Alexa in “real-time”, but to report malicious sites
once manual verification is complete.

5.3.3 Other Improvements
Other suggested pieces of future work include:

• Expand the number of sources used to collect data sets
– by increasing the range of sources, this would give a more diverse data set to train and
test with.
• Expand the packet captures to cover a week, vice smaller 24 hour increments

– would allow us to continuously inject URLs as they are recorded by the honeypot,
thereby giving a larger set of abusive hosts to train on.
• Expand on the number and type of RBLs that are used for determining malicious hosts.

– while we employed the use of the more well known RBLs, it may be worthwhile to
utilize a larger number of lists for labeling purposes.
• Implement the use of a whitelist, which is a list that would contain all verified non-

malicious hosts.
– these could help reduce the number of FNs, as the sites are known in advance, where
currently sites such as .gov and .mil are being misclassified.

5.3.4 Deployment
Considering all of the work and analysis performed by MWID on live enterprise traffic, we
recommend that a prototype model be designed, tested, and implemented. With the implemen-
tation phase taking place in a lab or virtual setting during testing, a matrix can be gathered to
determine how well MWID performs and record any impact the system may have in an inte-
grated environment or network.

With a prototype, more details can be gathered and used to determine the feasibility of a fully
functional and deployable system. Of these details, key network characteristics, properties, and
policy issues should be addressed. Essentially, this would help direct how MWID might be
deployed into an existing or future network design.

Foreseeing MWID as a viable security option capable of running in parallel with existing Navy
network security infrastructure, future work can offer recommendations and steps necessary to
make this tool readily available for deployment on Naval systems.
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5.4 Summary
To understand the practical, real-world performance of using transport traffic features to identify
malicious web sites found in live traffic flows, we presented a novel approach using our MWID
system as a viable option for identifying such sites.

We were able to successfully prove several key hypotheses. First, we were able to show that
traffic features and characteristics associated with each flow of network traffic can in fact be
used to classify data. Second, looking strictly at our manual inspection analysis, we positively
identify and properly classify 718 previously unknown malicious hosts, given no prior knowl-
edge of the flow and where the host and IP addresses were not identified by the RBLs.

MWID shows promise as a tool for raising the CA and lowering the overall FP rate in systems
that seek to identify and block abusive or malicious traffic. Our hope is that this work serves as
a step forward in bringing transport-based classifiers to production fruition.
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